ON ALPERIN’S LOWER BOUND FOR THE NUMBER OF BRAUER CHARACTERS

نویسندگان

چکیده

Abstract We prove that the number of conjugacy classes a finite group G consisting elements odd order, is larger than or equal to for normaliser Sylow 2-subgroup . This predicted by Alperin Weight Conjecture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The lower bound for the number of 1-factors in generalized Petersen graphs

‎In this paper‎, ‎we investigate the number of 1-factors of a‎ ‎generalized Petersen graph $P(N,k)$ and get a lower bound for the‎ ‎number of 1-factors of $P(N,k)$ as $k$ is odd‎, ‎which shows that the‎ ‎number of 1-factors of $P(N,k)$ is exponential in this case and‎ ‎confirms a conjecture due to Lovász and Plummer (Ann‎. ‎New York Acad‎. ‎Sci‎. ‎576(2006)‎, ‎no‎. ‎1‎, ‎389-398).

متن کامل

on translation of phatic communion and socio-cultural relationships between the characters of the novels

phatic communion is a cultural concept which differs across cultures. according to hofstede (2001), the u.s. tends to have individualistic culture; however, asian countries tend to have collectivistic cultures. these cultures view phatic communion differently. in individualistic cultures like u.s., phatic communion reflects speakers’ socio-cultural relationships in conversations. to see whether...

15 صفحه اول

Lower bound on the minus-domination number

For a graph G, a function f : V (G) ! f?1; 0; +1g is called a minus-domination function of G if the closed neighborhood of each vertex of G contains strictly more

متن کامل

On Degrees of Irreducible Brauer Characters

Based on a large amount of examples, which we have checked so far, we conjecture that |G|p′ ≤ ∑ φ φ(1) 2 where p is a prime and the sum runs through the set of irreducible Brauer characters in characteristic p of the finite group G. We prove the conjecture simultaneously for p-solvable groups and groups of Lie type in the defining characteristic. In non-defining characteristics we give asymptot...

متن کامل

On the topological lower bound for the multichromatic number

In 1976 Stahl [13] de ned the m-tuple coloring of a graph G and formulated a conjecture on the multichromatic number of Kneser graphs. For m = 1 this conjecture is Kneser's conjecture which was solved by Lovász [10]. Here we show that Lovász's topological lower bound in this way cannot prove Stahl's conjecture. We obtain that the strongest index bound only gives the trivial m · ω(G) lower bound...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transformation Groups

سال: 2022

ISSN: ['1531-586X', '1083-4362']

DOI: https://doi.org/10.1007/s00031-022-09734-8